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Abstract
We construct generalized coherent states for the one-dimensional double-
well potential and calculate their Mandel parameter, uncertainty relation and
Wigner functions. The singularities of their autocorrelation function undergo
bifurcations as the mean energy of the system is varied, and we analyse
their structure. In the high-energy regime these states consist of a coherent
superposition of two minimum-uncertainty Gaussians (they are Schrödinger
catlike states).

PACS numbers: 42.50.Ar, 03.65.Ud

1. Introduction

The coherent states of the harmonic oscillator

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 (1)

have a series of remarkable properties, namely they are eigenstates of the annihilation operator,
are obtained from vacuum by a displacement operator, minimize the Heisemberg uncertainty
relation and are overcomplete. All these properties have served as guidelines for different
generalizations: the first and the second ones rely on some kind of algebraic structure behind
the system in question [1], while the last two are more general [2].

In this paper we consider the application to the double-well potential of a recent proposal of
generalized coherent states [3], the Gazeau–Klauder (GK) states, which appears to be the most
general one, imposing only normalizability,continuity on the parameter and completeness (also
called resolution of the identity). Besides these basic demands, when dealing with physical
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systems one often requires temporal stability, meaning that the time evolution of a coherent
state is another coherent state.

These states were constructed recently for the one-dimensional Poschl–Teller oscillator
(the infinite square well being a limiting case) [4], where the presence of exact solutions in
analytic form allows a complete analysis of the problem. Other examples are the nonlinear
oscillators that appear in [5] and the calculation presented in [6] for a periodic potential, where
the GK states are compared to the canonical coherent states. The relation between these states
and generalized uncertainty relations was explored in [7], and a suitable Moyal bracket was
constructed in [8]. An extension of the GK states for higher dimension was made in [9], where
the formalism was applied to a two-dimensional thermodynamical problem.

The double-well potential has attracted some attention over the years because of its
similarity to the φ2 + λφ4 quantum field theory, which is the prototype of spontaneous
symmetry breaking. On the other hand, the application of external fields which render the
classical system chaotic allows using the double-well to study the interplay between quantum
tunnelling and chaos [10]. Moreover, we found that the GK states are related to Schödinger
catlike states for high energies, revealing yet another interesting property of this potential.

In section 2 we review the definition of generalized coherent states. Section 3 is devoted
to a brief description of the double-well potential. All the results are presented and discussed
in section 4 and we conclude in section 5. The classical solution of the system is analysed in
the appendix.

2. Gazeau–Klauder coherent states

In this section we present a brief review of the Gazeau–Klauder theory of coherent states for
general potentials [3]. Let H be a Hamiltonian with purely discrete nondegenerate (either
finite or infinite) spectrum

H |n〉 = h̄ωen|n〉 n � 0 (2)

where the en are pure numbers and e0 = 0. From now on we adopt units in which h̄ = ω = 1.
The generalized coherent states are then given by

|J, γ 〉 = 1√
N(J )

∑
n�0

J n/2

√
ρn

e−ienγ |n〉 (3)

where 0 � J ∈ R, γ ∈ R and ρn is an arbitrary function of n with ρ0 = 1. This is a direct
generalization of (1), which corresponds to en = n and ρn = n!.

Of course the normalization condition imposes that the series

N(J ) =
∑
n�0

J n

ρn

(4)

be convergent for some radius R (which may be infinite). By construction one has the temporal
stability property

e−iHt |J, γ 〉 = |J, γ + t〉. (5)

If the moment problem∫ R

0
J n W(J )

N(J )
dJ = ρn (6)

admits a positive solution for W(J ), then there exists a resolution of the identity in terms of
these states (and in this case they are said to be coherent), in the sense that

lim
�→∞

1

2�

∫ �

−�

dγ

∫ R

0
dJW(J )|J, γ 〉〈J, γ | =

∑
n�0

|n〉〈n|. (7)
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The mean value of the Hamiltonian (often called its lower symbol or Q-symbol) in these
states is determined by the choice of the function ρn. A common choice, which we will adopt
in this paper, is to set ρn = e1e2, . . . , en for n > 0, in which case the variable J can be
interpreted as the mean energy:

〈J, γ |H |J, γ 〉 = J. (8)

The coefficients 〈n|α〉 of the canonical coherent states are known to follow a Poisson
distribution. The statistical character of a general state is measured by the Mandel parameter
[12]

Q = (�n)2

〈n〉 − 1 = 〈n2〉 − 〈n〉2

〈n〉 − 1 (9)

and a state is said to be Poissonian when Q = 0, that is, (�n)2 = 〈n〉. The cases Q < 0 and
Q > 0 correspond to so-called sub-Poissonian and super-Poissonian states, respectively (sub-
Poissonian statistics is considered a fingerprint of the quantum nature of a state [13]). This
parameter gives an estimate of how many states |n〉 effectively contribute to the superposition
(3). In the case of the GK states we have

〈n〉 = J
d

dJ
ln N(J ) (10)

and therefore Q is independent of γ and given by

Q(J ) = J
d

dJ
ln

[
d

dJ
ln N(J )

]
. (11)

It is easy to see that for small J we can approximate this by

Q(J ) � J

(
2

e2
− 1

e1

)
< 0 J � 1. (12)

In what follows we construct GK states for the one-dimensional double-well potential, a
system which does not have an underlying algebraic structure and therefore is not suitable for
the constuction of Perelomov coherent states [1].

3. The double-well potential

The stationary Schrödinger equation for this system can be written, with dimensionless units,
as (

1

2

d2

dx2
− β

2
x2 + x4

)
φn(x) = enφn(x). (13)

The height of the potential barrier is U = β2/16. The classical solution for the system is shown
in the appendix. The quantum version is not solvable analytically, and in order to obtain the
energy levels and stationary states we write the Hamiltonian matrix in an appropriate Fourier
basis and diagonalize it numerically, using typically a few hundred elements.

In figure 1 we show the first four energy levels (the potential has been shifted so that
e0 = 0) and the corresponding eigenfunctions, both for the quartic potential, β = 0, and for
β = 10. Note that the ground state and the first excited one are almost degenerate in the second
case. For high values of β the states below the barrier tend to appear in doublets, and the
corresponding eigenstates come in even–odd pairs. This can already be noted in figure 1(b).

We now consider the states defined in (3) and investigate their physical properties. Since
the energy levels en in this case grow faster than n, the series (4) will be convergent for all
J . The corresponding moment problem (6), however, cannot be easily solved and, therefore,
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a

b

Figure 1. The potential (solid lines) and the first energy levels (dashed lines) for β = 0 and
β = 10. The energy levels serve as x axes for the corresponding wavefunctions.

the (over-)completeness of this family is still a conjecture. Since J corresponds to the energy
measured from the ground state, for β > 0 there will be a critical value Jc, which equals the
height of the barrier, Jc = U − e0, where the classical system is singular.

4. Generalized coherent states

Figure 2 shows the probability density |〈x|J, γ 〉|2 for a GK state with β = 20, which gives
Jc � 21.9. We use J = 25, which is close to the potential barrier. Figures 2(a) and (b)
correspond to t = 0 and t = T/4, where T is the classical period of a particle of energy J −e0.
We see that an initially localized peak evolves to an intricate distribution, in contrast to the
canonical coherent states, reflecting the anharmonicity of the potential. In order to explore
the physical properties of these states, we analyse quantities such as their statistical nature,
temporal evolution of �X̂�P̂ , Wigner functions and autocorrelation.

We begin by considering the Mandel parameter, figure 3, and note that the GK states can
display all possible behaviour. One can see that Q(J ) is always negative for small J , and
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b

a

Figure 2. The probability density |〈x|J, γ 〉|2 associated with a Gazeau–Klauder state for β = 20
and J = 25, for two different values of γ = t .

that Q(0) = 0 for any β, in agreement with (12). Indeed, when β > 0 the low energy states
tend to form doublets and the energy of the first excited state becomes very low. In this case
equation (12) can be further approximated by Q(J ) = −J/e1. As a result, the Mandel
parameter goes from 0 to −1 in a very short J interval, as we see in figure 3(b).

Furthermore, one can see that for high values of β the GK state with J = e1 involves
essentially only the first two eigenstates and can be approximated by

|J = e1, γ 〉 � |0〉 + eie1γ |1〉√
2

(14)

which for γ = 0 is a state localized at one side of the well. As γ evolves to 2π/e1 the
state becomes (|0〉 − |1〉)/√2, which is localized at the opposite side. Therefore the particle
keeps tunnelling back and forth with an extremely small frequency, proportional to e1. As
J is increased, other basis states become important to the GK superposition, and this simple
behaviour disappears. Note that the Mandel parameter for the state (14) can be obtained
analytically and is equal to −1.

The Gazeau–Klauder states for the double-well potential are therefore sub-Poissonian for
all J if β is less than a critical value βc, a fingerprint of their non-classicality. When β > βc,
on the other hand, they can become super-Poissonian for a finite range of J , as is clear
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a

b

Figure 3. The Mandel parameter can be negative, zero or positive, depending on β and J . In (b)
we see only the small-J region. Note that Q(0) = 0 for all β.

from figure 3(a). This flexibility is in contrast with the harmonic oscillator case, where the
coherent state is always Poissonian (while the squeezed states [15] can display all types of
statistics).

Another physical quantity of interest is the time dependence of the dispersion �X̂�P̂ ,
which must always be bigger than or equal to h̄/2 and that has exactly this value for the
canonical coherent state (1). Minimum-uncertainty states were defined for general potentials
in a series of papers [16], where the authors discuss the conditions for this property to
be realized. An analysis of the double-well along these lines was presented recently [17].
Coherent states derived from Lie algebras, usually called Perelomov coherent states [1],
are also known to saturate a generalized uncertainty relation under certain circunstances
[18].

We can see in figure 4 the dispersion for the GK states with J = 1, measured in units of
h̄, both for β = 0 and β = 10. Although in the first case the dispersion sometimes comes
quite close to the minimum value of 1

2 , we see that the GK states are not minimum-uncertainty
states. This does not come as a surprise, since the double-well potential lacks an exact
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Figure 4. The dispersion �X̂�P̂ (in units of h̄) for J = 1 as a function of time. The GK states
are not of minimum uncertainty.

algebraic formulation. Note also that as β increases so does the average dispersion, and the
GK states become more and more different from minimum-uncertainty states.

The double-well potential has recently been considered by one of us (MN) from the point
of view of quantum distribution functions [19], namely the Wigner and Husimi functions,
but only the stationary states were treated there. We present in figure 5 the Wigner functions
W(x, p) associated with the GK states with J = 1, γ = 0, again for β = 0 and β = 10.
We see that this function can display quite a complicated structure—besides being even in
p, it has no symmetries—and is negative in some portions of the phase space, a signature of
the non-classicality of the corresponding quantum state. The Wigner function is not localized
around any particular curve, even for the pure quartic oscillator, in contrast to the case of the
stationary states. Of course when J = 0 the GK state reduces to the ground state, and the
corresponding Wigner functions have been analysed in [19].

In figure 6(a) we show the probability density for the GK state at t = 0 for a high energy
regime, J = 500. The value of β is clearly irrelevant in this case. This non-local state
with several maxima consists of a superposition of nearly 70 stationary states around a mean
number 〈n〉 ≈ 80. A few moments later (figure 6(b)), however, one can see the appearance of
two minimum-uncertainty packets centred symmetrically around the origin, indicating that it
should be possible to find a simple analytical form for the GK state in the asymptotic limit. In
fact, in this regime the behaviour of the GK state can be unexpectedly well described by the
expression

〈x|J, t〉 � eiθ(x,t)

N
[eiπ/4�α(x, t) + e−iπ/4�−α(x, t)] (15)

where N is a normalization constant and �α(x, t) is the canonical coherent state (1) in the
coordinate representation

�α(x, t) = (πσ(t))−1/4 exp

{
− (x − xcl(t))

2

2σ(t)
+ ipcl(t)x

}
(16)

with α = xcl(t)/
√

σ(t) + i
√

σ(t)pcl(t). The quantities xcl(t) and pcl(t) are the classical
position and momentum for a quartic oscillator (see the appendix) with energy equal to J .
The time-dependent mean width σ(t) and the gauge-like local phase θ(x, t) must be chosen
properly. The agreement between this expression and the numerical data is generally around
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Figure 5. The Wigner functions of the GK states with J = 1. They are negative in some regions
of phase space, indicating the nonclassical character of the state.

a few per cent, with exceptional agreement (one part per million) when far from the turning
points.

The minimum-uncertainty states (16) are famous for being the closest quantum analogue
of a classical particle, and are considered to be a macroscopic quantum state when |α|2 
 1.
Consequently, a superposition of two such states is usually interpreted as a ‘macroscopic
quantum superposition’, an entity that has historically being called a Schrödinger catlike state
[20]. Schemes for generation [21], detection [22] and even teleportation [23] of Schrödinger
catlike states in QED cavities have been the subject of intense research in the past years. The
fact that GK states in a x4-anharmonic potential are of this kind should be remarked.

In figure 6(c) the Gaussians are at the classical turning points, and the half-period
interference is shown in figure 6(d ). This wavefunction is orthogonal to the initial one.
The Gaussians are again at the turning points in figure 6(e), where we can see the appearance
of the small irregularities responsible for the largest deviation between the analytical and
numerical solutions. Finally we show in figure 6(f ) the probability density after a classical
period. It is in phase with the initial state and their overlap is of the order of 60%.

The reconstruction properties of the GK states during time evolution can be analysed by
calculating their autocorrelation, A(t) = |〈J, 0|J, t〉|2, as a function of the excitation energy
J and time. The typical low-energy behaviour is shown in figure 7 for β = 10, which
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a b

c d

e f

Figure 6. The probability density for the GK state with J = 500, at different fractions of the
classical period. We see the coherent superposition of two minimum-uncertainty states.

gives Jc � 4.14. Each of the several maxima corresponds to a best local reconstruction of
the initial state, and we denote the position of the nth maximum by Tn. The intensity of
the peak, which corresponds to the fidelity of the reconstruction, is denoted In. Figure 7(a)
shows an excitation energy of J = 1, well below the threshold. The first peak, at T1 � 1.8,
shows an almost complete reconstruction of the initial state, with I1 � 0.95, and is followed
by two successive maxima with decreasing accuracy of reproduction. After this point the
tendency of the initial image to deteriorate is reversed and we see that the two following
maxima have increasing intensities. All these first peaks occur, to a good approximation, at
multiples of T1 and therefore the autocorrelation function is quasi-periodic in the short-time
scale. Let us denote this ‘quantum quasi-period’ by τ . A global maximum (I1 � 0.99) is
reached around Tr = 11.3, and we see that two time scales characterize the behaviour of the
system at this point. The first one, τ , is analogous to the classical period, although generally
different from it. The second one, the revival time Tr , is roughly an order of magnitude greater
and has no classical analogue. Other time scales (for example the so-called super-revival
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a b

c d

Figure 7. Autocorrelation functions for β = 10 and different (small) values of J . We can observe
the unfolding of the singularities.

time) become important as time increases, but we restrict our attention to the short time
evolution.

Figure 7(b) shows the autocorrelation for the same potential but with twice the excitation
energy, J = 2. The positions of the maxima change moderately but the behaviour of the
third peak indicates a process that is central to understanding the dynamics of the GK states
under changes in energy: the unfolding of singularities (maxima). We see a side singularity
being created close to the third peak, which evolves to twin peaks in figure 7(c): an unstable
singularity having unfolded into two maxima and one minimum in a well-known process
belonging to singularity theory. Figure 7(c) corresponds to a value of J lower than the barrier
threshold (J = 3) and figure 7(d ) shows the autocorrelation shortly after the crossing of the
barrier (J = 5). The position of the first maximum, which corresponds to the classical period
when the parameters (J, β) are in a particular region, is not strongly affected by the barrier.
The same conclusion is valid for the position of the revival time. In both cases the intensities
Iτ and Ir rapidly decrease as J increases and crosses the barrier: the singularity position
is qualitatively invariant but not its intensity. In particular the revival time becomes poorly
characterized as J becomes large (it is already no longer a global maxima in figure 7(d )).

In figure 8 we show some graphics of A(t) for higher values of J . Let us focus our
attention on the fourth peak. It is poorly resolved in the first figure, but as J increases we
see the singularities involving the main maximum being suppressed. This is confirmed in
figures 8(c) and (d ). In the last one the peak is, within the resolution of the figure, smooth.
The last figure corresponds to J = 500, and is related to the evolution of the catlike state
(15). The partial reconstructions occur at multiples of the classical period, but their intensity is
progressively weakened due to the time-dependence of the parameter σ(t). We must note that
the high-energy regularity is different from the low-energy one, as we can see by comparing
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a b

c d

Figure 8. Autocorrelation functions for some higher values of J . We observe the folding of the
singularities.

Figure 9. Number of stationary states below the barrier as a function of β.

figures 7(a) and 8(d ): another kind of order is reached as the energy is increased. The
folding/unfolding of the singularities is the route between the two distinct regimes.

We calculated the autocorrelation for β = 20 in order to investigate the β-dependence
of the low-energy quasi-period τ . We found that in this case τ is indeed the classical period,
in contrast to the β = 10 case. This is explained by the number of stationary states below
the barrier in each case. In figure 9 we plot this quantity as a function of β. The relation is
approximately linear and we see that there are not ‘enough’ states in the β = 10 case for the
system to behave ‘quasi-classicaly’ below the barrier. On the other hand, one will always find
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Figure 10. First peaks of the autocorrelation function. Different symbols denote different
intensities, and the solid line is the classical period. Note the perfect agreement between the
highest peak and the classical period when J is far from the barrier height.

the classical period to be the relevant time scale for sufficently high energy, as we saw in the
preceding paragraph.

Finally, we plot in figure 10 the position of the first peaks for β = 20, as a function of
J , together with the corresponding classical period of oscillation, Tcl , which is the solid line.
Different symbols denote different intensities of reconstruction. It is clear that τ corresponds
to Tcl when J is very small compared to the barrier. As this threshold is crossed the classical
period diverges, but the position of the first peak is not strongly affected. Its intensity,
however, is progressively decreased until it practically disappears. A typical bifurcation
pattern appears in the position of the second peak around J = 12, exhibiting the unfolding of
the singularity. Before this branching point the initial state is partially reproduced at Tcl and
2Tcl, and immediately after this point two reproducing maxima for the image are created in a
short time interval, one of them being dominant. They are both practically unaffected by the
crossing of the barrier, but do not survive to the high-energy region. The topological structure
of the singularities is more robust and the classical period is part of this structure.

5. Conclusions

We have obtained generalized coherent states for the one-dimensional double-well. These
states are not minimum-uncertainty states, and can be either sub-Poissonian or super-
Poissonian, depending on the height of the potential barrier and the mean energy. The
relation between the low and high energy regimes was considered in terms of the folding and
unfolding of the singularities in the autocorrelation function. For high energies these states
can be considered Schrödinger catlike states, since they consist of a coherent superposition of
two minimum-uncertainty Gaussians.
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Appendix. The classical double-well potential

Let

ε = 1

2

(
dx

dt

)2

− β

2
x2 + x4 (A.1)

be the energy of the system in dimensionless units. Note that the pure quartic oscillator
corresponds to the value β = 0. Negative values of ε correspond to ‘confined’—below the
barrier—movement. We can rewrite (A.1) as

dx

dt
=

√
2
[
λ2 − (

x2 − x2
0

)2]
(A.2)

where

x2
0 = β

4
λ = |

√
ε + U | U = β2

16
. (A.3)

Note that U is the barrier height and x0 are the points corresponding to the minimum of the
potential. The turning points are ±√

x2
0 ± λ.

If ε > 0 we can define

a2 = λ − x2
0 b2 = λ + x2

0 (A.4)

and integrate by quadrature

t + t0 =
∫ x

0

dy√
2(a2 + y2)(b2 − y2)

= 1√
2(a2 + b2)

sd−1

(
x
√

(a2 + b2)

ab
,

√
b2

a2 + b2

)
(A.5)

to get the solution

x(t) =
√

ε

2λ
sd


2

√
λ(t + t0),

√
λ + x2

0

2λ


 (A.6)

where sd is a Jacobi function.
Since the complete elliptic integral of the first kind K(κ) is a quarter of the period of the

Jacobi sd(u, κ) function, we have the period of the movement as a function of the energy:

Tε>0 = 2√
λ
K(κ) (A.7)

where

κ =
√

λ + x2
0

2λ
. (A.8)

The relation between the action variable

Sε>0 = 4
∫ T/4

0

(
dx

dt

)2

dt = 4ε√
λ

∫ K(κ)

0
cd2(u, κ)nd2(u, κ) du (A.9)

and the energy can be shown to be [24]:

Sε>0 = 8

3

√
λ
[(

λ − x2
0

)
K(κ) + 2x2

0E(κ)
]

(A.10)

where E(κ) is the complete elliptic integral of the second kind.
In the confined region ε < 0 an analogous calculation results in

x(t) =
√

x2
0 − λnd

(√
2
√

λ + x2
0(t + t0), k

−1

)
(A.11)

and in this case the period of the motion and the action variable are, respectively



5786 M Novaes et al

Tε<0 =
√

2

λ + x2
0

K(κ−1) (A.12)

Sε<0 = 8

3
√

2

√
λ + x2

0

[(
λ − x2

0)K(κ−1
)

+ x2
0E(κ−1)

]
. (A.13)

This system has a singular behaviour for ε = 0, in which case the trajectory is called
the separatrix, when the period of the movement goes to infinity and the action variable has a
discontinuity. In this case we have the quadrature integral (assuming the particle to be at the
turning point in t = 0)

t =
∫ x

√
β/2

dy√
2y2(β/2 − y2)

= 1√
β

ln

[√
β +

√
β + 2x2

√
2x

]
(A.14)

which gives

x(t) =
√

β

2

1

cosh(
√

βt)
. (A.15)
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